Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 42 43 44 45 46 47 48 >> [Всего задач: 294]      



Задача 66945

Темы:   [ Признаки и свойства параллелограмма ]
[ Вспомогательные равные треугольники ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 3
Классы: 8,9

В параллелограмме $ABCD$ точки $E$ и $F$ выбираются на сторонах $BC$ и $AD$ соответственно так, что $EF=ED=DC$. Пусть $M$ – середина $BE$, а $MD$ пересекает $EF$ в точке $G$. Докажите, что углы $EAC$ и $GBD$ равны.
Прислать комментарий     Решение


Задача 108022

Темы:   [ Вспомогательная окружность ]
[ Правильный (равносторонний) треугольник ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Ортоцентр и ортотреугольник ]
Сложность: 3
Классы: 8,9

В остроугольном треугольнике соединены основания высот. Оказалось, что в полученном треугольнике две стороны параллельны сторонам исходного треугольника. Докажите, что третья сторона также параллельна одной из сторон исходного треугольника.

Прислать комментарий     Решение

Задача 115958

Темы:   [ Сумма длин диагоналей четырехугольника ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Отношения линейных элементов подобных треугольников ]
Сложность: 3
Классы: 7,8,9

Диагонали AC и BD равнобедренной трапеции ABCD пересекаются в точке O; известно также, что в трапецию можно вписать окружность.
Докажите, что  ∠BOC > 60°.

Прислать комментарий     Решение

Задача 52379

Темы:   [ Проекции оснований, сторон или вершин трапеции ]
[ Вписанный угол равен половине центрального ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Теорема Пифагора (прямая и обратная) ]
[ Правильный (равносторонний) треугольник ]
Сложность: 3+
Классы: 8,9

Четырёхугольник ABCD вписан в окружность с центром O,  ∠BOA = ∠COD = 60°.  Перпендикуляр BK, опущенный на сторону AD, равен 6;  AD = 3BC.
Найдите площадь треугольника COD.

Прислать комментарий     Решение

Задача 52380

Темы:   [ Проекции оснований, сторон или вершин трапеции ]
[ Вписанный угол равен половине центрального ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3+
Классы: 8,9

Четырёхугольник ABCD вписан в окружность с центром в точке O,  AOOB,  OCOD.  Перпендикуляр, опущенный из вершины C на прямую AD, равен 9,
AD = 2BC.  Найдите площадь треугольника AOB.

Прислать комментарий     Решение

Страница: << 42 43 44 45 46 47 48 >> [Всего задач: 294]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .