|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи В треугольнике $ABC$, где $AB < BC$, биссектриса угла $C$ пересекает в точке $P$ прямую, параллельную $AC$ и проходящую через вершину $B$, а в точке $R$ – касательную из вершины $B$ к описанной окружности треугольника. Точка $R'$ симметрична $R$ относительно $AB$. Докажите, что $\angle R'PB = \angle RPA$. |
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 73]
Рассматриваются всевозможные шестизвенные замкнутые ломаные, все вершины
которых лежат на окружности.
Стороны пятиугольника в порядке обхода равны 5, 6, 7, 8 и 9. Стороны этого пятиугольника касаются одной окружности. На какие отрезки точка касания со стороной, равной 5, делит эту сторону?
Докажите, что если стороны пятиугольника в порядке обхода равны 4, 6, 8, 7 и 9, то его стороны не могут касаться одной окружности.
В окружность радиуса R вписан шестиугольник ABCDEF. Известно, что
В выпуклом шестиугольнике ABCDEF все стороны равны, а также AD = BE = CF. Докажите, что в этот шестиугольник можно вписать окружность.
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 73] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|