ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи На плоскости дана несамопересекающаяся замкнутая ломаная, никакие три вершины которой не лежат на одной прямой. Назовём пару несоседних звеньев особой, если продолжение одного из них пересекает другое звено. Докажите, что число особых пар чётно. На сторонах AD и DC параллелограмма ABCD взяты соответственно точки N и M, причём AN : AD = 1 : 3, DM : DC = 1 : 4. Отрезки BM и CN пересекаются в точке O. Найдите отношение OM : OB. |
Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 499]
Верно ли, что изменив одну цифру в десятичной записи любого натурального числа, можно получить простое число?
Каких натуральных чисел от 1 до 1000000 (включительно) больше: чётных с нечётной суммой цифр или нечётных с чётной суммой цифр?
Могут ли произведения всех ненулевых цифр двух последовательных натуральных чисел отличаться ровно в 54 раза?
Пусть N – натуральное число. Докажите, что в десятичной записи либо числа N, либо числа 3N найдётся одна из цифр 1, 2, 9.
Все натуральные числа выписали подряд без промежутков на бесконечную ленту: 123456789101112... Затем ленту разрезали на полоски по 7 цифр в каждой.
Докажите, что любое семизначное число
Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 499]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке