Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Сумма десяти натуральных чисел равна 1001. Какое наибольшее значение может принимать НОД (наибольший общий делитель) этих чисел?

Вниз   Решение


Автор: Фольклор

Верно ли, что если  b > a + c > 0,  то квадратное уравнение  ax² + bx + c = 0   имеет два корня?

ВверхВниз   Решение


Докажите, что уравнение прямой на комплексной плоскости всегда может быть записано в виде  BzB z + C = 0,  где C – чисто мнимое число.

ВверхВниз   Решение


Радиус окружности равен 10, данная точка удалена от центра на расстояние, равное 15. Найдите её наименьшее и наибольшее расстояния от точек окружности.

ВверхВниз   Решение


Докажите, что каждая сторона четырёхугольника меньше суммы трех других его сторон.

ВверхВниз   Решение


Решить систему уравнений:
  x² + y² – 2z² = 2a²,
  x + y + 2z = 4(a² + 1),
  z² – xy = a².

ВверхВниз   Решение


В четырёхугольнике ABCD длины сторон AB и BC равны 1, ∠B = 100°, ∠D = 130°. Найдите BD.

ВверхВниз   Решение


При каких значениях параметра a сумма квадратов корней уравнения  x2 + 2ax + 2a2 + 4a + 3 = 0  является наибольшей? Чему равна эта сумма? (Корни рассматриваются с учётом кратности.)

Вверх   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 182]      



Задача 35447

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Площадь (прочее) ]
Сложность: 3
Классы: 9,10

На какое минимальное число равновеликих треугольников можно разрезать квадрат 8*8 с вырезанной угловой клеткой?
Прислать комментарий     Решение


Задача 66623

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Площади криволинейных фигур ]
Сложность: 3
Классы: 9,10,11

Требуется разделить криволинейный треугольник на рисунке на 2 части одинаковой площади, проведя одну линию циркулем. Это можно сделать, выбрав в качестве центра одну из отмеченных точек и проводя дугу через другую отмеченную точку. Найдите способ это сделать и докажите, что он подходит.

Прислать комментарий     Решение

Задача 34917

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Куб ]
[ Объем тетраэдра и пирамиды ]
Сложность: 3+
Классы: 10,11

На какое наименьшее число тетраэдров можно разбить куб?

Прислать комментарий     Решение

Задача 35481

Тема:   [ Разрезания на части, обладающие специальными свойствами ]
Сложность: 3+
Классы: 8,9,10

Докажите, что любой выпуклый многоугольник можно разрезать на остроугольные треугольники.
Прислать комментарий     Решение


Задача 58238

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Подобные фигуры ]
[ Вписанные четырехугольники (прочее) ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Трапеции (прочее) ]
[ Перебор случаев ]
Сложность: 3+
Классы: 8,9,10

Докажите, что если выпуклый четырёхугольник ABCD можно разрезать на два подобных четырёхугольника, то ABCD – трапеция или параллелограмм.

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 182]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .