Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Через одну из точек пересечения двух равных окружностей проведена общая секущая. Докажите, что отрезок этой секущей, заключённый между окружностями, делится пополам окружностью, построенной на общей хорде этих окружностей как на диаметре.

Вниз   Решение


Окружность, диаметр которой равен $ \sqrt{10}$, проходит через соседние вершины A и B прямоугольника ABCD. Длина касательной, проведённой из точки C к окружности, равна 3, AB = 1. Найдите все возможные значения, которые может принимать длина стороны BC.

ВверхВниз   Решение


Стороны AB, BC, CD и DA четырёхугольника ABCD касаются некоторой окружности в точках K, L, M и N соответственно, S – точка пересечения отрезков KM и LN. Известно, что вокруг четырёхугольника SKBL можно описать окружность. Докажите, что вокруг четырёхугольника SNDM также можно описать окружность.

ВверхВниз   Решение


В квадрате ABCD из точки D как из центра проведена внутри квадрата дуга через вершины A и C. На AD как на диаметре построена внутри квадрата полуокружность. Отрезок прямой, соединяющей произвольную точку P дуги AC с точкой D, пересекает полуокружность AD в точке K. Докажите, что длина отрезка PK равна расстоянию от точки P до стороны AB.

Вверх   Решение

Задачи

Страница: << 40 41 42 43 44 45 46 >> [Всего задач: 289]      



Задача 108172

Темы:   [ Ломаные ]
[ Неравенство треугольника (прочее) ]
[ Экстремальные свойства (прочее) ]
Сложность: 4
Классы: 8,9

Ломаная разбивает круг на две равновеликие части. Докажите, что кратчайшая такая ломаная – это диаметр.

Прислать комментарий     Решение

Задача 108474

Темы:   [ Длины сторон (неравенства) ]
[ Неравенство треугольника (прочее) ]
Сложность: 4
Классы: 8,9

Известно, что a, b и c — длины сторон треугольника. Докажите, что

$\displaystyle {\frac{a}{b+c-a}}$ + $\displaystyle {\frac{b}{c+a-b}}$ + $\displaystyle {\frac{c}{a+b-c}}$$\displaystyle \ge$3.

Прислать комментарий     Решение


Задача 108928

Темы:   [ Симметрия помогает решить задачу ]
[ Неравенство треугольника ]
Сложность: 4
Классы: 8,9

Пусть AB – наименьшая сторона остроугольного треугольника ABC . На сторонах BC и AC выбраны точки X и Y соответственно. Докажите, что длина ломаной AXYB не меньше удвоенной длины стороны AB .
Прислать комментарий     Решение


Задача 109176

Темы:   [ Отрезок, соединяющий середины ребер ]
[ Неравенство треугольника (прочее) ]
[ Длины и периметры (геометрические неравенства) ]
[ Средняя линия треугольника ]
Сложность: 4
Классы: 10,11

Середины противоположных рёбер тетраэдра соединены. Доказать, что сумма трёх полученных отрезков меньше полусуммы рёбер тетраэдра.
Прислать комментарий     Решение


Задача 110770

Темы:   [ Углы между биссектрисами ]
[ Неравенство треугольника (прочее) ]
[ Вписанные и описанные окружности ]
Сложность: 4
Классы: 8,9

Точка I – центр вписанной окружности треугольника ABC. Внутри треугольника выбрана точка P такая, что

ÐPBA + ÐPCA = ÐPBC + ÐPCB.

Докажите, что APAI, причём равенство выполняется тогда и только тогда, когда P совпадает с I.

Прислать комментарий     Решение

Страница: << 40 41 42 43 44 45 46 >> [Всего задач: 289]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .