Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Требуется записать число вида 7...7, используя только семёрки (их можно писать и по одной, и по нескольку штук подряд), причём разрешены только сложение, вычитание, умножение, деление и возведение в степень, а также скобки. Для числа 77 самая короткая запись – это просто 77. А существует ли число вида 7...7, которое можно записать по этим правилам, используя меньшее количество семёрок, чем в его десятичной записи?

Вниз   Решение


Рассматривается функция y = f (x), определённая на всём множестве действительных чисел и удовлетворяющая для некоторого числа k ≠ 0 соотношению f (x + k) . (1 − f (x)) = 1 + f (x). Доказать, что f (x) — периодическая функция.

Вверх   Решение

Задачи

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 280]      



Задача 30445

Тема:   [ Симметричная стратегия ]
Сложность: 3+
Классы: 7,8

а) Двое по очереди ставят слонов в клетки шахматной доски. Очередным ходом надо побить хотя бы одну небитую клетку. Слон бьет и клетку, на которой стоит. Проигрывает тот, кто не может сделать ход.

б) Та же игра, но с ладьями.

Прислать комментарий     Решение


Задача 30456

Тема:   [ Выигрышные и проигрышные позиции ]
Сложность: 3+
Классы: 7,8,9

Имеются две кучки конфет: в одной - 20, в другой - 21. За ход нужно съесть одну из кучек, а вторую разделить на две не обязательно равных кучки. Проигрывает тот, кто не может сделать ход.

Прислать комментарий     Решение


Задача 30467

Тема:   [ Выигрышные и проигрышные позиции ]
Сложность: 3+
Классы: 6,7,8

Игра начинается с числа 0. За ход разрешается прибавить к имеющемуся числу любое натуральное число от 1 до 9. Выигрывает тот, кто получит число 100.

Прислать комментарий     Решение


Задача 35053

Темы:   [ Теория игр (прочее) ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 9,10,11

2n конфет разложены по n коробкам. Девочка и мальчик по очереди берут по одной конфете, первой выбирает девочка.
Докажите, что мальчик может выбирать конфеты так, чтобы две последние конфеты оказались из одной коробки.

Прислать комментарий     Решение

Задача 35335

Тема:   [ Симметричная стратегия ]
Сложность: 3+
Классы: 7,8,9

Двое мальчиков играют в такую игру: они по очереди ставят ладьи на шахматную доску. Выигрывает тот, при ходе которого все клетки доски оказываются битыми поставленными фигурами. Кто выиграет, если оба стараются играть наилучшим образом?

Прислать комментарий     Решение

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 280]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .