ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В таблице m строк, n столбцов. Горизонтальным ходом называется такая перестановка элементов таблицы, при которой каждый элемент остаётся в той строке, в которой он был и до перестановки; аналогично определяется вертикальный ход ("строка" в предыдущем определении заменяется на "столбец"). Укажите такое k, что за k ходов (любых) можно получить любую перестановку элементов таблицы, но существует такая перестановка, которую нельзя получить за меньшее число ходов. В n стаканах достаточно большой вместительности налито поровну воды. Разрешается переливать из любого стакана в любой другой столько воды, сколько имеется в этом последнем. При каких n можно в конечное число шагов слить воду в один стакан? В треугольнике ABC сторона BC равна полусумме двух других сторон. Доказать, что биссектриса угла A перпендикулярна отрезку, соединяющему центры вписанной и описанной окружностей треугольника. Три окружности радиуса R проходят через точку H; A, B и C — точки их попарного пересечения, отличные
от H. Докажите, что:
В треугольнике ABC ∠A=60∘, AD – биссектриса. Построен равносторонний треугольник PDQ с высотой DA. Прямые PB и QC пересекаются в точке K. Докажите, что AK – симедиана треугольника ABC. Какому условию должны удовлетворять коэффициенты a, b, c уравнения x³ + ax² + bx + c, чтобы три его корня составляли арифметическую прогрессию? Пусть x1, x2,..., xn – корни уравнения anxn + ... + a1x + a0 = 0. Какие корни будут у уравнений Докажите, что остаток от деления многочлена P(x) на x – c равен P(c). Докажите, что многочлен степени n имеет не более чем n корней. По кругу расставлено девять чисел – четыре единицы и пять нулей. Каждую секунду над числами проделывают следующую операцию: между соседними числами ставят ноль, если они различны, и единицу, если они равны; после этого старые числа стирают. Пусть P(x) и Q(x) – многочлены,
причём Q(x) не равен нулю тождественно. Докажите, что существуют
такие многочлены T(x) и R(x), что Можно ли из какой-то точки плоскости провести к графику многочлена n-й степени больше чем n касательных? |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 65]
Сколькими способами можно выбрать из 15 различных слов набор, состоящий не более чем из пяти слов?
В классе, в котором учатся Петя и Ваня – 31 человек. Сколькими способами можно выбрать из класса футбольную команду (11 человек) так, чтобы Петя и Ваня не входили в команду одновременно?
Сколькими способами можно составить расписание первого тура чемпионата России по футболу, в котором играет 16 команд? (Является важным, кто хозяин поля.)
Сколько четырёхзначных чисел можно составить, используя цифры 1, 2, 3, 4 и 5, если:
Сколько существует пятизначных чисел, получаемых из числа 12345 перестановкой цифр и у которых чётные цифры не стоят рядом?
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 65]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке