Processing math: 100%
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

Автор: Анджанс А.

В таблице m строк, n столбцов. Горизонтальным ходом называется такая перестановка элементов таблицы, при которой каждый элемент остаётся в той строке, в которой он был и до перестановки; аналогично определяется вертикальный ход ("строка" в предыдущем определении заменяется на "столбец"). Укажите такое k, что за k ходов (любых) можно получить любую перестановку элементов таблицы, но существует такая перестановка, которую нельзя получить за меньшее число ходов.

Вниз   Решение


В n стаканах достаточно большой вместительности налито поровну воды. Разрешается переливать из любого стакана в любой другой столько воды, сколько имеется в этом последнем. При каких n можно в конечное число шагов слить воду в один стакан?

ВверхВниз   Решение


В треугольнике ABC сторона BC равна полусумме двух других сторон. Доказать, что биссектриса угла A перпендикулярна отрезку, соединяющему центры вписанной и описанной окружностей треугольника.

ВверхВниз   Решение


Три окружности радиуса R проходят через точку HA, B и C — точки их попарного пересечения, отличные от H. Докажите, что:
а) H — точка пересечения высот треугольника ABC;
б) радиус описанной окружности треугольника ABC тоже равен R.

ВверхВниз   Решение


Автор: Уткин А.

В треугольнике ABC A=60, AD – биссектриса. Построен равносторонний треугольник PDQ с высотой DA. Прямые PB и QC пересекаются в точке K. Докажите, что AK – симедиана треугольника ABC.

ВверхВниз   Решение


Какому условию должны удовлетворять коэффициенты a, b, c уравнения  x³ + ax² + bx + c,  чтобы три его корня составляли арифметическую прогрессию?

ВверхВниз   Решение


Пусть  x1, x2,..., xn  – корни уравнения  anxn + ... + a1x + a0 = 0.  Какие корни будут у уравнений
  а)  a0xn + ... + an–1x + an = 0;
  б)  anx2n + ... + a1x² + a0 = 0?

ВверхВниз   Решение


Докажите, что остаток от деления многочлена P(x) на  x – c  равен P(c).

ВверхВниз   Решение


Докажите, что многочлен степени n имеет не более чем n корней.

ВверхВниз   Решение


По кругу расставлено девять чисел – четыре единицы и пять нулей. Каждую секунду над числами проделывают следующую операцию: между соседними числами ставят ноль, если они различны, и единицу, если они равны; после этого старые числа стирают.
Могут ли через некоторое время все числа стать одинаковыми?

ВверхВниз   Решение


Пусть P(x) и Q(x) – многочлены, причём Q(x) не равен нулю тождественно. Докажите, что существуют такие многочлены T(x) и R(x), что
P(x) = Q(x)T(x) + R(x)  и  deg R(x) < degQ(x);  при этом T(x) и R(x) определяются однозначно.

ВверхВниз   Решение


Можно ли из какой-то точки плоскости провести к графику многочлена n-й степени больше чем n касательных?

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 65]      



Задача 30696

Темы:   [ Задачи с ограничениями ]
[ Сочетания и размещения ]
Сложность: 2+
Классы: 7,8

Сколькими способами можно выбрать из 15 различных слов набор, состоящий не более чем из пяти слов?

Прислать комментарий     Решение

Задача 30698

Темы:   [ Задачи с ограничениями ]
[ Сочетания и размещения ]
Сложность: 2+
Классы: 7,8

В классе, в котором учатся Петя и Ваня – 31 человек. Сколькими способами можно выбрать из класса футбольную команду (11 человек) так, чтобы Петя и Ваня не входили в команду одновременно?

Прислать комментарий     Решение

Задача 35628

Темы:   [ Задачи с ограничениями ]
[ Правило произведения ]
[ Сочетания и размещения ]
[ Перестановки и подстановки (прочее) ]
Сложность: 2+
Классы: 9,10

Сколькими способами можно составить расписание первого тура чемпионата России по футболу, в котором играет 16 команд? (Является важным, кто хозяин поля.)

Прислать комментарий     Решение

Задача 60421

Темы:   [ Задачи с ограничениями ]
[ Правило произведения ]
[ Десятичная система счисления ]
Сложность: 2+
Классы: 8,9

Сколько четырёхзначных чисел можно составить, используя цифры 1, 2, 3, 4 и 5, если:
  а) никакая цифра не повторяется более одного раза;
  б) повторения цифр допустимы;
  в) числа должны быть нечётными и повторений цифр быть не должно?

Прислать комментарий     Решение

Задача 35748

Темы:   [ Задачи с ограничениями ]
[ Правило произведения ]
[ Перестановки и подстановки (прочее) ]
Сложность: 2+
Классы: 7,8

Сколько существует пятизначных чисел, получаемых из числа 12345 перестановкой цифр и у которых чётные цифры не стоят рядом?

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 65]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .