Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 102]
|
|
Сложность: 4 Классы: 8,9,10
|
Пользуясь только линейкой, разделите сторону квадратного стола на n равных частей. Линии можно проводить только на поверхности стола.
|
|
Сложность: 4 Классы: 8,9,10
|
Дан квадратный лист бумаги со стороной 2016. Можно ли, согнув его не более десяти раз, построить отрезок длины 1?
В треугольник АВС вписана окружность и отмечен её центр I и точки касания P, Q, R со сторонами ВС, СА, АВ соответственно. Одной линейкой постройте точку К, в которой окружность, проходящая через вершины В и С, касается (внутренним образом) вписанной окружности.
Угол, изготовленный из прозрачного материала,
двигают так, что две непересекающиеся окружности касаются
его сторон внутренним образом. Докажите, что на нем
можно отметить точку, которая описывает дугу окружности.
|
|
Сложность: 5 Классы: 9,10,11
|
С помощью одного циркуля постройте окружность, в которую переходит данная
прямая AB при инверсии относительно данной окружности
с данным центром O.
Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 102]