ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи У кассира было 30 монет: 10, 15 и 20 копеек на сумму 5 рублей. Докажите, что 20-копеечных монет у него было больше, чем 10-копеечных. Можно ли расставить по кругу семь целых неотрицательных чисел так, чтобы сумма каких-то трёх расположенных подряд чисел была равна 1, каких-то трёх подряд расположенных – 2, ... , каких-то трёх подряд расположенных – 7? Докажите, что a²pq + b²qr + c²rp ≤ 0, если a, b, c – стороны треугольника; а p, q, r – любые числа, удовлетворяющие условию p + q + r = 0. Докажите, что для любого многочлена P(x) степени m существует единственный многочлен Q(x) степени m + 1 , для которого ΔQ(x) = P(x) и Q(0) = 0. Восстановите а) треугольник; б) пятиугольник по серединам его сторон. Постройте прямоугольный треугольник по гипотенузе и высоте, опущенной из вершины прямого угла на гипотенузу. Школьник хочет вырезать из квадрата размером 2n×2n наибольшее количество прямоугольников размером 1×(n + 1). Найти это количество для каждого натурального значения n. В трапеции ABCD даны основания AD = 12 и BC = 8. На продолжении стороны BC выбрана такая точка M, что CM = 2,4. |
Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 598]
Из натурального числа вычли сумму его цифр и получили 2007. Каким могло быть исходное число?
Сформулируйте и докажите признаки делимости на 2n и 5n.
Последняя цифра квадрата натурального числа равна 6. Докажите, что его предпоследняя цифра нечётна.
Докажите, что если записать в обратном порядке цифры любого натурального числа, то разность исходного и нового числа будет делиться на 9.
Найдите наименьшее натуральное число, делящееся на 36, в записи которого встречаются все 10 цифр.
Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 598]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке