Страница:
<< 1 2 3 4 5
6 >> [Всего задач: 26]
|
|
Сложность: 5 Классы: 10,11
|
В тетраэдр ABCD вписана сфера с центром O, касающаяся его граней BCD, ACD, ABD и ABC в точках A1, B1, C1 и D1 соответственно.
а) Пусть Pa – такая точка, что точки, симметричные ей относительно прямых OB, OC и OD, лежат в плоскости BCD. Точки Pb, Pc и Pd определяются аналогично. Докажите, что прямые A1Pa, B1Pb, C1Pc и D1Pd пересекаются в некоторой точке P.
б) Пусть I – центр сферы, вписанной в тетраэдр A1B1C1D1; A2 – точка пересечения прямой A1I с плоскостью B1C1D1; B2, C2, D2 определены аналогично. Докажите, что P лежит внутри тетраэдра A2B2C2D2.
|
|
Сложность: 5 Классы: 10,11
|
Середины всех высот некоторого тетраэдра лежат на его вписанной сфере. Верно ли, что тетраэдр правильный?
|
|
Сложность: 5+ Классы: 10,11
|
В тетраэдр
ABCD , длины всех ребер которого не более 100, можно поместить
две непересекающиеся сферы диаметра 1. Докажите, что в него можно поместить
одну сферу диаметра 1,01.
Точка
G — центр шара, вписанного в правильный тетраэдр
ABCD.
Прямая
OG, соединяющая
G с точкой
O, лежащей внутри тетраэдра, пересекает
плоскости граней в точках
A',
B',
C',
D'. Доказать, что
|
|
Сложность: 4 Классы: 10,11
|
Дан центрально-симметричный октаэдр $ABCA'B'C'$ (пары $A$ и $A'$, $B$ и $B'$, $C$ и $C'$ противоположны), такой, что суммы плоских углов при каждой из вершин октаэдра равны $240^{\circ}$. В треугольниках $ABC$ и $A'BC$ отмечены точки Торричелли $T_1$ и $T_2$. Докажите, что расстояния от $T_1$ и $T_2$ до $BC$ равны.
Страница:
<< 1 2 3 4 5
6 >> [Всего задач: 26]