Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 50]
|
|
Сложность: 3+ Классы: 8,9,10
|
Какими должны быть значения a и b, чтобы многочлен
x4 + x³ + 2x² + ax + b был полным квадратом?
|
|
Сложность: 4- Классы: 9,10,11
|
Дан многочлен P(x) = a0xn + a1xn–1 + ... + an–1x + an. Положим m = min {a0, a0 + a1, ..., a0 + a1 + ... + an}.
Докажите, что P(x) ≥ mxn при x ≥ 1.
|
|
Сложность: 4- Классы: 10,11
|
Дан многочлен P(x) = a2nx2n + a2n–1x2n–1 + ... + a1x + a0, у которого каждый коэффициент ai принадлежит отрезку [100, 101].
При каком минимальном натуральном n у такого многочлена может найтись действительный корень?
|
|
Сложность: 4- Классы: 8,9,10
|
Даны два многочлена от переменной x с целыми коэффициентами. Произведение их есть многочлен от переменной x с чётными коэффициентами, не все из которых делятся на 4. Доказать, что в одном из многочленов все коэффициенты чётные, а в другом – хоть один нечётный.
|
|
Сложность: 4- Классы: 9,10,11
|
Существует ли такой многочлен P(x), что у него есть отрицательный
коэффициент, а все коэффициенты любой его степени (P(x))n, n > 1, положительны?
Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 50]