Страница:
<< 15 16 17 18
19 20 21 >> [Всего задач: 158]
|
|
Сложность: 5- Классы: 8,9,10
|
Белые и чёрные играют в следующую игру. В углах шахматной доски стоят два
короля: белый на a1, чёрный на h8. Играющие делают ход по очереди. Начинают белые. Играющий может ставить своего короля на любое соседнее поле
(если только оно свободно), соблюдая следующие правила: нельзя увеличивать
расстояние между королями (расстоянием между двумя полями называется наименьшее
число шагов короля, за которое он может пройти с одного поля на другое: так, в
начале игры расстояние между королями – 7 ходов). Выигрывает тот, кто
поставит своего короля на противоположную кромку доски (белого короля на
вертикаль h или восьмую горизонталь, чёрного – на вертикаль a или первую горизонталь). Кто выиграет при правильной игре?
|
|
Сложность: 5- Классы: 8,9,10
|
На бесконечной во все стороны шахматной доске выделено некоторое множество
клеток A. На всех клетках доски, кроме множества A, стоят короли. Все короли могут по команде одновременно сделать ход, заключающийся в том, что король либо остаётся на месте, либо занимает соседнее поле, то есть делает "ход короля". При этом он может занять и то поле, с которого сходит другой король, но в результате хода двум королям оказаться в одной клетке запрещается. Существует ли такое k и такой способ движения королей, что после k ходов вся доска будет заполнена королями? Рассмотрите варианты:
а) A есть множество всех клеток, у которых обе координаты кратны 100 (предполагается, что одна горизонтальная и одна вертикальная линии занумерованы всеми целыми числами от минус бесконечности до бесконечности и каждая клетка доски обозначается двумя числами – координатами по этим двум осям);
б) A есть множество всех клеток, каждая из которых бьётся хотя бы одним из 100 ферзей, расположенных каким-то фиксированным образом.
|
|
Сложность: 5- Классы: 7,8,9
|
Каждая клетка шахматной доски закрашена в один из цветов – синий или красный. Докажите, что клетки одного из цветов обладают тем свойством, что их может обойти шахматный ферзь (на клетках этого цвета ферзь может побывать не один раз, на клетки другого цвета он не ставится, но может через них перепрыгивать).
|
|
Сложность: 5 Классы: 9,10,11
|
С четырёх сторон шахматной доски размером n×n построена кайма шириной в два поля. Докажите, что кайму можно обойти шахматным конём, побывав на каждом поле один и только один раз, в тех и только тех случаях, когда n – 1 кратно 4.
|
|
Сложность: 5 Классы: 7,8,9,10,11
|
Игроки A и B по очереди ходят конем на шахматной доске 1994×1994. Игрок A может делать только горизонтальные ходы, то есть такие, при которых конь перемещается на соседнюю горизонталь. Игроку B разрешены только вертикальные ходы, при которых конь перемещается на соседнюю вертикаль. Игрок A ставит коня на поле, с которого начинается игра, и делает первый ход. При этом каждому игроку запрещено ставить коня на то поле, на котором он уже побывал в данной игре. Проигравшим считается игрок, которому некуда ходить. Докажите, что для игрока A существует выигрышная стратегия.
Страница:
<< 15 16 17 18
19 20 21 >> [Всего задач: 158]