ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 152 153 154 155 156 157 158 >> [Всего задач: 1006]      



Задача 58107

Темы:   [ Принцип Дирихле (площадь и объем) ]
[ Формула включения-исключения ]
[ Сочетания и размещения ]
[ Перегруппировка площадей ]
[ Доказательство от противного ]
Сложность: 3
Классы: 9,10

   а) В квадрате площади 6 расположены три многоугольника площади 3. Докажите, что среди них найдутся два многоугольника,
площадь общей части которых не меньше 1.
   б) В квадрате площади 5 расположено девять многоугольников площади 1. Докажите, что среди них найдутся два многоугольника,
площадь общей части которых не меньше 1/9.

Прислать комментарий     Решение

Задача 60320

 [Золотая цепочка]
Темы:   [ Геометрическая прогрессия ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Классическая комбинаторика (прочее) ]
Сложность: 3
Классы: 9,10

   а) На постоялом дворе остановился путешественник, и хозяин согласился в качестве уплаты за проживание брать кольца золотой цепочки, которую тот носил на руке. Но при этом он поставил условие, чтобы оплата была ежедневной: каждый день хозяин должен был иметь на одно кольцо больше, чем в предыдущий. Замкнутая в кольцо цепочка содержала 11 колец, а путешественник собирался прожить ровно 11 дней, поэтому он согласился. Какое наименьшее число колец он должен распилить, чтобы иметь возможность платить хозяину?

   б) Из скольких колец должна состоять цепочка, чтобы путешественник мог прожить на постоялом дворе наибольшее число дней при условии, что он может распилить только n колец?

Прислать комментарий     Решение

Задача 60364

Темы:   [ Принцип Дирихле (прочее) ]
[ Турниры и турнирные таблицы ]
[ Сочетания и размещения ]
[ Арифметическая прогрессия ]
Сложность: 3
Классы: 7,8,9

В волейбольном турнире команды играют друг с другом по одному матчу. За победу дается одно очко, за поражение – ноль. Известно, что в один из моментов турнира все команды имели разное количество очков. Сколько очков набрала в конце турнира предпоследняя команда, и как она сыграла с победителем?

Прислать комментарий     Решение

Задача 60439

Темы:   [ Формула включения-исключения ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Классическая комбинаторика (прочее) ]
Сложность: 3
Классы: 8,9

Сколько существует целых чисел от 1 до 33000, которые не делятся ни на 3, ни на 5, но делятся на 11?

Прислать комментарий     Решение

Задача 60743

Темы:   [ Малая теорема Ферма ]
[ Комбинаторика орбит ]
[ Правило произведения ]
Сложность: 3
Классы: 9,10,11

p – простое число. Сколько существует способов раскрасить вершины правильного p-угольника в a цветов? (Раскраски, которые можно совместить поворотом, считаются одинаковыми.)

Прислать комментарий     Решение

Страница: << 152 153 154 155 156 157 158 >> [Всего задач: 1006]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .