Страница:
<< 168 169 170 171
172 173 174 >> [Всего задач: 1006]
В связном графе степени всех вершин чётны. Докажите, что на рёбрах этого графа можно расставить стрелки так, чтобы выполнялись следующие условия:
а) двигаясь по стрелкам, можно добраться от каждой вершины до любой другой;
б) для каждой вершины числа входящих и выходящих рёбер равны.
|
|
Сложность: 4 Классы: 8,9,10
|
За круглым столом совещались 2n депутатов. После перерыва эти же 2n депутатов расселись вокруг стола, но уже в другом порядке.
Доказать, что найдутся два депутата, между которыми как до, так и после перерыва сидело одинаковое число человек.
|
|
Сложность: 4 Классы: 8,9,10
|
На доске написано 10 натуральных чисел. Докажите, что из этих чисел можно выбрать несколько чисел и расставить между ними знаки "+" и "–" так, чтобы полученная в результате алгебраическая сумма делилась на 1001.
|
|
Сложность: 4 Классы: 9,10,11
|
Докажите, что существуют числа, не менее чем 100 способами представимые в виде суммы 2001 слагаемого, каждое из которых является 2000-й степенью целого числа.
На плоскости дано n > 4 точек, никакие три из которых не лежат на одной прямой.
Докажите, что существует не менее различных выпуклых четырёхугольников с вершинами в этих точках.
Страница:
<< 168 169 170 171
172 173 174 >> [Всего задач: 1006]