ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 737]      



Задача 30456

Тема:   [ Выигрышные и проигрышные позиции ]
Сложность: 3+
Классы: 7,8,9

Имеются две кучки конфет: в одной - 20, в другой - 21. За ход нужно съесть одну из кучек, а вторую разделить на две не обязательно равных кучки. Проигрывает тот, кто не может сделать ход.

Прислать комментарий     Решение


Задача 30467

Тема:   [ Выигрышные и проигрышные позиции ]
Сложность: 3+
Классы: 6,7,8

Игра начинается с числа 0. За ход разрешается прибавить к имеющемуся числу любое натуральное число от 1 до 9. Выигрывает тот, кто получит число 100.

Прислать комментарий     Решение


Задача 32817

Тема:   [ Взвешивания ]
Сложность: 3+
Классы: 7,8,9

а) Есть 10 монет. Известно, что одна из них фальшивая (по весу тяжелее настоящих). Как за три взвешивания на чашечных весах без гирь определить фальшивую монету?
    б) Как определить фальшивую монету за три взвешивания, если монет 27?
Прислать комментарий     Решение


Задача 35053

Темы:   [ Теория игр (прочее) ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 9,10,11

2n конфет разложены по n коробкам. Девочка и мальчик по очереди берут по одной конфете, первой выбирает девочка.
Докажите, что мальчик может выбирать конфеты так, чтобы две последние конфеты оказались из одной коробки.

Прислать комментарий     Решение

Задача 35117

Темы:   [ Теория алгоритмов (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
[ Задачи с неравенствами. Разбор случаев ]
Сложность: 3+
Классы: 7,8,9

Несколько камней весят вместе 10 т, при этом каждый из них весит не более 1 т.
  а) Докажите, что этот груз можно за один раз увезти на пяти трёхтонках.
  б) Приведите пример набора камней, удовлетворяющих условию, для которых четырёх трёхтонок может не хватить, чтобы увезти груз за один раз.

Прислать комментарий     Решение

Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 737]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .