Страница:
<< 59 60 61 62
63 64 65 >> [Всего задач: 737]
На клетчатой доске лежат доминошки, не касаясь даже углами. Каждая доминошка занимает две соседние (по стороне) клетки доски. Нижняя левая и правая верхняя клетки доски свободны. Всегда ли можно пройти из левой нижней клетки в правую верхнюю, делая ходы только вверх и вправо на соседние по стороне клетки и не наступая на доминошки, если доска имеет размеры
а) $100\times101$ клеток;
б) $100\times100$ клеток?
|
|
Сложность: 4- Классы: 9,10,11
|
Султан собрал 300 придворных мудрецов и предложил им испытание. Имеются колпаки 25 различных цветов, заранее известных мудрецам. Султан сообщил, что на каждого из мудрецов наденут один из этих колпаков, причём если для каждого цвета написать количество надетых колпаков, то все числа будут различны. Каждый мудрец будет видеть колпаки остальных мудрецов, а свой колпак нет. Затем все мудрецы одновременно огласят предполагаемый цвет своего колпака. Могут ли мудрецы заранее договориться действовать так, чтобы гарантированно хотя бы 150 из них назвали цвет верно?
|
|
Сложность: 4- Классы: 8,9,10,11
|
Петя и Вася по очереди красят рёбра $N$-угольной пирамиды: Петя – в красный цвет, а Вася – в зелёный (ребро нельзя красить дважды). Начинает Петя. Выигрывает Вася, если после того, как все рёбра окрашены, из любой вершины пирамиды в любую другую вершину ведёт ломаная, состоящая из зелёных рёбер. В противном случае выигрывает Петя. Кто из игроков может действовать так, чтобы всегда выигрывать, как бы ни играл его соперник?
|
|
Сложность: 4- Классы: 7,8,9
|
При каких n гири массами 1 г, 2 г, 3 г, ..., n г можно разложить на три равные по массе кучки?
100 чисел, среди которых есть положительные и отрицательные, выписаны в ряд.
Подчеркнуто, во-первых, каждое положительное число, а во-вторых, каждое число,
сумма которого со следующим положительна. Может ли сумма всех подчеркнутых
чисел оказаться отрицательной? Равной нулю?
Страница:
<< 59 60 61 62
63 64 65 >> [Всего задач: 737]