ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Ссылки по теме:
Статья А. Розенталя "Правило крайнего" Материалы по этой теме: Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 488]
На доске написаны n > 3 различных натуральных чисел, меньших чем (n – 1)!. Для каждой пары этих чисел Серёжа поделил большее на меньшее с остатком и записал в тетрадку полученное неполное частное (так, если бы он делил 100 на 7, то он бы получил 100 = 14·7 + 2 и записал бы в тетрадку число 14). Докажите, что среди чисел в тетрадке найдутся два равных.
Пусть k и n – натуральные числа, k ≤ n. Расставьте первые n² натуральных чисел в таблицу n×n так, чтобы в каждой строке числа шли в порядке возрастания и при этом сумма чисел в k-м столбце была а) наименьшей; б) наибольшей.
Решите в натуральных числах уравнение nx + ny = nz.
Имеется 13 гирь, каждая из которых весит целое число граммов. Известно, что любые 12 из них можно так разложить на две чашки весов, по шесть гирь на каждой, что наступит равновесие. Докажите, что все гири имеют один и тот же вес.
12 теннисистов участвовали в турнире. Известно, что каждые два теннисиста сыграли между собой ровно один раз и не было ни одного теннисиста, проигравшего все встречи. Доказать, что найдутся такие теннисисты A, B, C, что A выиграл у B, B у C, C у A. (В теннисе ничьих не бывает.)
Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 488] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|