ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 35 36 37 38 39 40 41 >> [Всего задач: 488]      



Задача 105048

Темы:   [ Разные задачи на разрезания ]
[ Наименьший или наибольший угол ]
Сложность: 3+
Классы: 7,8,9

Покажите как любой четырехугольник разрезать на три трапеции (параллелограмм тоже можно считать трапецией).
Прислать комментарий     Решение


Задача 107622

Темы:   [ Диаметр, основные свойства ]
[ Наименьшее или наибольшее расстояние (длина) ]
[ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
[ Хорды и секущие (прочее) ]
Сложность: 3+
Классы: 7,8,9

В круге провели несколько (конечное число) различных хорд так, что каждая из них проходит через середину какой – либо другой из проведённых хорд. Докажите, что все эти хорды являются диаметрами круга.
Прислать комментарий     Решение


Задача 107700

Темы:   [ Неравенство треугольника (прочее) ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Линейные неравенства и системы неравенств ]
[ Доказательство от противного ]
[ Числа Фибоначчи ]
Сложность: 3+
Классы: 7,8,9

Имеется 10 отрезков, причём известно, что длина каждого – целое число сантиметров. Два самых коротких отрезка – по сантиметру, самый длинный – 50 см. Докажите, что среди отрезков найдутся три, из которых можно составить треугольник.

Прислать комментарий     Решение

Задача 110223

Темы:   [ Четность и нечетность ]
[ Принцип крайнего (прочее) ]
Сложность: 3+
Классы: 7,8,9

На доске записано произведение a1a2... a100, где a1, ..., a100 – натуральные числа. Рассмотрим 99 выражений, каждое из которых получается заменой одного из знаков умножения на знак сложения. Известно, что значения ровно 32 из этих выражений чётные. Какое наибольшее количество чётных чисел среди a1, a2, ..., a100 могло быть?

Прислать комментарий     Решение

Задача 116253

Темы:   [ Взвешивания ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Перебор случаев ]
Сложность: 3+
Классы: 9,10,11

Два пирата делили добычу, состоящую из пяти золотых слитков, масса одного из которых 1 кг, а другого – 2 кг. Какую массу могли иметь три других слитка, если известно, что какие бы два слитка ни выбрал себе первый пират, второй пират сможет так разделить оставшиеся слитки, чтобы каждому из них досталось золота поровну?

Прислать комментарий     Решение

Страница: << 35 36 37 38 39 40 41 >> [Всего задач: 488]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .