Страница:
<< 47 48 49 50
51 52 53 >> [Всего задач: 355]
Биссектрисы BB1 и CC1 треугольника ABC пересекаются в точке I. Прямая B1C1 пересекает описанную окружность треугольника ABC в точках
M и N. Докажите, что радиус описанной окружности треугольника MIN вдвое больше радиуса описанной окружности треугольника ABC.
На сторонах AB и AC треугольника ABC внешним образом построены прямоугольные треугольники ABC1 и AB1C, причём ∠C1 = ∠B1 = 90°,
∠ABC1 = ∠ACB1 = φ; M – середина BC. Докажите, что MB1 = MC1 и ∠B1MC1 = 2φ.
На неравных сторонах AB и AC треугольника ABC внешним образом построены равнобедренные треугольники AC1B и AB1C с углом φ при вершине, M – точка медианы AA1 (или её продолжения), равноудалённая от точек B1 и C1. Докажите, что ∠B1MC1 = φ.
В треугольнике ABC заданы длины двух сторон: AB = 6,
BC = 16. Кроме того, известно, что центр окружности, проведённой через вершину B и середины сторон AB и AC, лежит на биссектрисе угла C. Найдите AC.
Внутри треугольника ABC отмечена точка M так, что при этом ∠BAM = ∠B, ∠AMB = 100°, ∠C = 70°. Докажите, что BM < AC.
Страница:
<< 47 48 49 50
51 52 53 >> [Всего задач: 355]