ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 369]      



Задача 79248

Темы:   [ Принцип крайнего (прочее) ]
[ Принцип Дирихле (прочее) ]
[ Многогранники и многоугольники (прочее) ]
[ Выпуклые тела ]
[ Наглядная геометрия в пространстве ]
Сложность: 3+
Классы: 9,10,11

Доказать, что у всякого выпуклого многогранника найдутся две грани с одинаковым числом сторон.
Прислать комментарий     Решение


Задача 79506

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Принцип Дирихле (прочее) ]
[ НОД и НОК. Взаимная простота ]
Сложность: 4-
Классы: 7,8,9

Доказать, что из любых 27 различных натуральных чисел, меньших 100, можно выбрать два числа, не являющихся взаимно простыми.

Прислать комментарий     Решение

Задача 79515

Темы:   [ Десятичная система счисления ]
[ Принцип Дирихле (прочее) ]
Сложность: 4-
Классы: 8,9,10

Даны 7 различных цифр. Доказать, что для любого натурального числа n найдётся пара данных цифр, сумма которых оканчивается той же цифрой, что и число.
Прислать комментарий     Решение


Задача 30811

Темы:   [ Степень вершины ]
[ Принцип Дирихле (прочее) ]
[ Четность и нечетность ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 8,9,10

Каждый из 102 учеников одной школы знаком не менее чем с 68 другими.
Докажите, что среди них найдутся четверо, имеющие одинаковое число знакомых.

Прислать комментарий     Решение

Задача 31295

Темы:   [ Уравнения в целых числах ]
[ Принцип Дирихле (прочее) ]
Сложность: 4-
Классы: 6,7,8

Есть 100 купюр двух типов: по a и b рублей, причём  a ≠ b (mod 101).
Доказать, что можно выбрать несколько купюр так, что полученная сумма (в рублях) делится на 101.

Прислать комментарий     Решение

Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 369]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .