Страница: 1
2 3 4 5 6 7 >> [Всего задач: 769]
В треугольник ABC со сторонами AB = 5, BC = 7, CA = 10 вписана окружность. Прямая, пересекающая стороны AB и BC в точках M и K, касается этой окружности. Найдите периметр треугольника MBK.
Из точки
A проведены касательные
AB и
AC
к окружности с центром
O. Докажите, что если из точки
M
отрезок
AO виден под углом
90
o, то отрезки
OB и
OC
видны из нее под равными углами.
Две окружности пересекаются в точках A и B.
К этим окружностям проведена общая касательная, которая касается
окружностей в точках C и D.
Докажите, что прямая AB делит отрезок CD пополам.
На плоскости нарисованы две окружности (см. рис.). Существует ли некоторая точка, лежащая вне каждой из этих окружностей, для которой любая прямая, проходящая через неё, пересекает хотя бы одну из окружностей?
Из концов дуги в 200° проведены касательные до взаимного пересечения. Найдите угол между ними.
Страница: 1
2 3 4 5 6 7 >> [Всего задач: 769]