Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 241]      



Задача 57735

Тема:   [ Псевдоскалярное произведение ]
Сложность: 4
Классы: 8,9

Решите с помощью псевдоскалярного произведения задачу 4.29, б.
Прислать комментарий     Решение


Задача 108897

Темы:   [ Скалярное произведение. Соотношения ]
[ Свойства медиан. Центр тяжести треугольника. ]
Сложность: 4
Классы: 8,9

Пусть O – центр окружности, описанной около равнобедренного треугольника ABC ( AB=AC ), D – середина стороны AB , а E – точка пересечения медиан треугольника ACD . Докажите, что OE CD .
Прислать комментарий     Решение


Задача 115330

Темы:   [ Векторы помогают решить задачу ]
[ Гомотетия помогает решить задачу ]
Сложность: 4
Классы: 8,9

Внутри треугольника ABC выбрана произвольная точка X . Лучи AX , BX и CX пересекают описанную около треугольника ABC окружность в точках A1 , B1 и C1 соответственно. Точка A2 симметрична точке A1 относительно середины стороны BC . Аналогично определяются точки B2 и C2 . Докажите, что найдётся такая фиксированная точка Y , не зависящая от выбора X , что точки Y , A2 , B2 и C2 лежат на одной окружности.
Прислать комментарий     Решение


Задача 115721

Темы:   [ Векторы помогают решить задачу ]
[ Геометрические неравенства ]
Сложность: 4
Классы: 8,9

Докажите, что разность квадратов соседних сторон параллелограмма меньше произведения его диагоналей.
Прислать комментарий     Решение


Задача 67367

Темы:   [ Векторы помогают решить задачу ]
[ Теорема Птолемея ]
[ Теорема косинусов ]
Сложность: 4
Классы: 9,10,11

Автор: Шекера А.

Даны 4 точки на плоскости $A$, $B$, $C$, $D$, не образующие прямоугольник. Пусть стороны треугольника $T$ равны $AB+CD$, $AC+BD$, $AD+BC$. Докажите, что $T$ – остроугольный.
Прислать комментарий     Решение


Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 241]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .