Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 43]
На одной из сторон прямого угла даны точки A и B (точка A расположена между вершиной угла и точкой B).
С помощью циркуля и линейки постройте на другой стороне такую точку X, чтобы ∠AXB = 2∠ABX.
|
|
Сложность: 4- Классы: 8,9,10
|
Петя вырезал из бумаги прямоугольник, положил на него такой же прямоугольник и склеил их по периметру. В верхнем прямоугольнике он провёл диагональ, опустил на неё перпендикуляры из двух оставшихся вершин, разрезал верхний прямоугольник по этим линиям и отогнул полученные треугольники во внешнюю сторону, так что вместе с нижним прямоугольником они образовали прямоугольник.
Как по полученному прямоугольнику восстановить исходный с помощью циркуля и линейки?
Дан произвольный треугольник ABC. Постройте прямую, проходящую через
вершину B и делящую его на два треугольника, радиусы вписанных окружностей которых
равны.
Постройте правильный десятиугольник.
|
|
Сложность: 4 Классы: 8,9,10,11
|
Во вписанном пятиугольнике отметили середины четырех сторон, после чего сам пятиугольник стерли. Восстановите его.
Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 43]