ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]      



Задача 35209

Темы:   [ Длины сторон (неравенства) ]
[ Построения (прочее) ]
[ Наименьшее или наибольшее расстояние (длина) ]
Сложность: 3
Классы: 8,9,10

На плоскости нарисован острый угол с вершиной в точке O и точка P внутри него. Постройте точки A и B на сторонах угла так, чтобы треугольник PAB имел наименьший возможный периметр.
Прислать комментарий     Решение


Задача 98325

Темы:   [ Квадратные уравнения. Теорема Виета ]
[ Построения (прочее) ]
[ Графики и ГМТ на координатной плоскости ]
Сложность: 4-
Классы: 8,9,10,11

На координатной плоскости xOy построена парабола  y = x².  Затем начало координат и оси стёрли.
Как их восстановить с помощью циркуля и линейки (используя имеющуюся параболу)?

Прислать комментарий     Решение

Задача 116113

Темы:   [ Поворот помогает решить задачу ]
[ Построения (прочее) ]
Сложность: 4
Классы: 8,9

Даны точки A и B и окружность S . С помощью циркуля и линейки постройте на окружности S такие точки C и D , что AC || BD и дуга CD имеет данную величину α .
Прислать комментарий     Решение


Задача 57857

Темы:   [ Центральная симметрия помогает решить задачу ]
[ Построения (прочее) ]
Сложность: 5
Классы: 8,9

Через общую точку A окружностей S1 и S2 проведите прямую l так, чтобы разность длин хорд, высекаемых на l окружностями S1 и S2 имела заданную величину a.
Прислать комментарий     Решение


Задача 55457

Темы:   [ Треугольник (экстремальные свойства) ]
[ Построения (прочее) ]
[ Вневписанные окружности ]
[ Окружность, вписанная в угол ]
Сложность: 5
Классы: 8,9,10

С помощью циркуля и линейки проведите через данную точку прямую, отсекающую от данного угла треугольник наименьшего возможного периметра.

Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .