Страница: 1
2 3 4 >> [Всего задач: 19]
Можно ли осветить круглую арену 100 прожекторами
так, чтобы каждый из них освещал выпуклую фигуру,
никакой из них не освещал всю арену, но
любые два из них вместе уже освещали всю арену?
Какие выпуклые фигуры могут содержать прямую?
F – выпуклая фигура с двумя взаимно перпендикулярными осями симметрии. Через точку M, лежащую внутри фигуры и отстоящую от осей на расстояния a и b, провели прямые, параллельные осям. Эти прямые делят F на четыре области. Найдите разность между суммой площадей большей и меньшей из областей и суммой площадей двух других.
|
|
Сложность: 3 Классы: 9,10,11
|
Центр круга – точка с декартовыми координатами (a, b).
Известно, что начало координат лежит внутри круга. Обозначим через S+ общую площадь частей круга, состоящих из точек, обе координаты которых имеют одинаковый знак; а через S– – площадь частей, состоящих из точек с координатами разных знаков. Найдите величину S+ – S–.
|
|
Сложность: 3+ Классы: 9,10
|
Существует ли выпуклая фигура, не имеющая осей симметрии, но переходящая в себя при некотором повороте?
Страница: 1
2 3 4 >> [Всего задач: 19]