ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 136 137 138 139 140 141 142 >> [Всего задач: 1221]      



Задача 98458

Темы:   [ Последовательности (прочее) ]
[ Процессы и операции ]
[ Десятичная система счисления ]
[ Доказательство от противного ]
Сложность: 4
Классы: 8,9

Неутомимые Фома и Ерёма строят последовательность. Сначала в последовательности одно натуральное число. Затем они по очереди выписывают следующие числа: Фома получает очередное число, прибавляя к предыдущему любую из его цифр, а Ерёма – вычитая из предыдущего любую из его цифр. Докажите, что какое-то число в этой последовательности повторится не меньше 100 раз.

Прислать комментарий     Решение

Задача 98500

Темы:   [ Теория графов (прочее) ]
[ Перебор случаев ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 8,9

В весеннем туре турнира городов 2000 года старшеклассникам страны N было предложено шесть задач. Каждую задачу решило ровно 1000 школьников, но никакие два школьника не решили вместе все шесть задач. Каково наименьшее возможное число старшеклассников страны N, принявших участие в весеннем туре?

Прислать комментарий     Решение

Задача 98506

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Подсчет двумя способами ]
[ Доказательство от противного ]
Сложность: 4
Классы: 10,11

Клетки доски m×n покрашены в два цвета. Известно, что на какую бы клетку ни поставить ладью, она будет бить больше клеток не того цвета, на котором стоит (клетка под ладьей тоже считается побитой). Докажите, что на каждой вертикали и каждой горизонтали клеток обоих цветов поровну.

Прислать комментарий     Решение

Задача 98578

Темы:   [ Таблицы и турниры (прочее) ]
[ Перебор случаев ]
[ Четность и нечетность ]
Сложность: 4
Классы: 9,10,11

Колоду из 52 карт разложили в виде прямоугольника 13×4. Известно, что если две карты лежат рядом по вертикали или горизонтали, то они одной масти либо одного достоинства. Докажите, что в каждом горизонтальном ряду (из 13 карт) все карты одной масти.

Прислать комментарий     Решение

Задача 105107

Темы:   [ Турниры и турнирные таблицы ]
[ Подсчет двумя способами ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 4
Классы: 8,9,10,11

Участники шахматного турнира сыграли друг с другом по одной партии. Для каждого участника A было подсчитано число набранных им очков (за победу дается 1 очко, за ничью – ½ очка, за поражение – 0 очков) и коэффициент силы по формуле: сумма очков тех участников, у кого A выиграл, минус сумма очков тех, кому он проиграл.
  а) Могут ли коэффициенты силы всех участников быть больше 0?
  б) Могут ли коэффициенты силы всех участников быть меньше 0?

Прислать комментарий     Решение

Страница: << 136 137 138 139 140 141 142 >> [Всего задач: 1221]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .