Страница:
<< 6 7 8 9
10 11 12 >> [Всего задач: 541]
Длины сторон остроугольного треугольника – последовательные целые
числа.
Докажите, что высота, опущенная на среднюю по величине сторону, делит её на отрезки, разность длин которых равна 4.
В прямоугольном треугольнике
ABC из точки
E , расположенной в
середине катета
BC , опущен перпендикуляр
EL на гипотенузу
AB .
Найдите углы треугольника
ABC , если
AE = · EL и
BC > AC .
Дан остроугольный равнобедренный треугольник
ABC
(
AB=BC );
E – точка пересечения перпендикуляра
к стороне
BC , восставленного в точке
B , и
перпендикуляра к основанию
AC , восставленного в
точке
C ;
D – точка пересечения перпендикуляра
к стороне
AB , восставленного в точке
A , с
продолжением стороны
BC . На продолжении основания
AC
за точку
C отметили точку
F , для которой
CF=AD .
Докажите, что
EF=ED .
Окружность с центром на стороне AC равнобедренного треугольника ABC (AB = BC) касается сторон AB и BC.
Найдите радиус окружности, если площадь треугольника ABC равна 25, а отношение высоты BD к стороне AC равно 3 : 8.
С центром в вершине
D квадрата
ABCD построена окружность,
проходящая через вершины
A и
C . Через середину
M стороны
AB
проведена касательная к этой окружности, пересекающая сторону
BC в
точке
K . Найдите отношение
BK:KC .
Страница:
<< 6 7 8 9
10 11 12 >> [Всего задач: 541]