Страница:
<< 174 175 176 177
178 179 180 >> [Всего задач: 1006]
|
|
Сложность: 4 Классы: 8,9,10
|
Имеются пять внешне одинаковых гирь с попарно различными массами. Разрешается выбрать любые три из них A, B и C и спросить, верно ли,
что
m(A) < m(B) < m(C) (через m(x) обозначена масса гири x). При этом даётся ответ "Да" или "Нет". Можно ли за девять вопросов гарантированно узнать, в каком порядке идут веса гирь?
Назовём десятизначное число интересным, если оно делится на 11111 и все его цифры различны. Сколько существует интересных чисел?
|
|
Сложность: 4 Классы: 7,8,9,10
|
Проведено три семейства параллельных прямых, по 10 прямых в каждом. Какое наибольшее число треугольников они могут вырезать из плоскости?
|
|
Сложность: 4 Классы: 8,9,10
|
На встречу выпускников пришло 45 человек. Оказалось, что любые двое из них, имеющие одинаковое число знакомых среди пришедших, не знакомы друг с другом.
Какое наибольшее число пар знакомых могло быть среди участвовавших во встрече?
|
|
Сложность: 4 Классы: 8,9,10,11
|
Докажите, что при любых натуральных 0 <
k <
m < n числа
и
не взаимно просты.
Страница:
<< 174 175 176 177
178 179 180 >> [Всего задач: 1006]