ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Диагонали выпуклого четырёхугольника ABCD пересекаются в точке L. В треугольнике ABL отметили точку пересечения высот H, а в треугольниках BCL, CDL и DAL – центры O1, O2 и O3 описанных окружностей. Затем весь рисунок, кроме точек H, O1, O2, O3, стерли. Восстановите его. |
Страница: << 40 41 42 43 44 45 46 >> [Всего задач: 831]
Имеется угольник с углом в 40°. Как с его помощью построить угол, равный:
Дан равнобедренный треугольник ABC (AB = AC). На меньшей дуге AB описанной около него окружности взята точка D. На продолжении отрезка AD за точку D выбрана точка E так, что точки A и E лежат в одной полуплоскости относительно BC. Описанная окружность треугольника BDE пересекает сторону AB в точке F. Докажите, что прямые EF и BC параллельны.
Разделите с помощью линейки и циркуля данный отрезок на n равных частей.
Сколько осей симметрии может быть у треугольника?
Отрезки AB и CD пересекаются в точке O и делятся этой точкой пополам. Докажите, что AC || BD и AD || BC.
Страница: << 40 41 42 43 44 45 46 >> [Всего задач: 831]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке