ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Точки P1, P2 и P3, не лежащие на одной прямой, расположены внутри выпуклого 2n-угольника A1...A2n. Докажите, что если сумма площадей треугольников A1A2Pi, A3A4Pi,..., A2n - 1A2nPi равна одному и тому же числу c для i = 1, 2, 3, то для любой внутренней точки P сумма площадей этих треугольников равна c.

Вниз   Решение


Пусть на двух пересекающихся прямых l1 и l2 выбраны точки M1 и M2, не совпадающие с точкой пересечения M этих прямых. Поставим в соответствие им окружность, проходящую через M1, M2 и M.
Если (l1, M1), (l2, M2), (l3, M3) — прямые с выбранными точками в общем положении, то согласно задаче 2.80, а) три окружности, соответствующие парам (l1, M1) и (l2, M2), (l2, M2) и (l3, M3), (l3, M3) и (l1, M1), пересекаются в одной точке, которую мы поставим в соответствие тройке прямых с точками.
а) Пусть l1, l2, l3, l4 — четыре прямые общего положения, на каждой из которых задано по точке, причем эти точки лежат на одной окружности. Докажите, что четыре точки, соответствующие тройкам, получаемым отбрасыванием одной из прямых, лежат на одной окружности.
б) Докажите, что каждому набору из n прямых общего положения с заданными на них точками, лежащими на одной окружности, можно поставить в соответствие точку (при нечетном n) или окружность (при четном n) так, что n окружностей (точек при четном n), соответствующих наборам из n - 1 прямых, проходят через эту точку (лежат на этой окружности при четном n).

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 134]      



Задача 57100

Тема:   [ Выпуклые многоугольники ]
Сложность: 4
Классы: 9

Какое наибольшее число острых углов может иметь выпуклый многоугольник?
Прислать комментарий     Решение


Задача 58112

Тема:   [ Выпуклые многоугольники ]
Сложность: 4
Классы: 8,9

Внутри квадрата A1A2A3A4 лежит выпуклый четырёхугольник A5A6A7A8. Внутри A5A6A7A8 выбрана точка A9. Никакие три из этих девяти точек не лежат на одной прямой. Докажите, что из этих девяти точек можно выбрать 5 точек, расположенных в вершинах выпуклого пятиугольника.
Прислать комментарий     Решение


Задача 58113

Тема:   [ Выпуклые многоугольники ]
Сложность: 4
Классы: 8,9

На плоскости дано несколько правильных n-угольников. Докажите, что выпуклая оболочка их вершин имеет не менее n углов.
Прислать комментарий     Решение


Задача 58114

Тема:   [ Выпуклые многоугольники ]
Сложность: 4
Классы: 8,9

Среди всех таких чисел n, что любой выпуклый 100-угольник можно представить в виде пересечения (т. е. общей части) n треугольников, найдите наименьшее.
Прислать комментарий     Решение


Задача 58115

Темы:   [ Выпуклые многоугольники ]
[ Малые шевеления ]
Сложность: 4
Классы: 8,9

Назовем выпуклый семиугольник особым, если три его диагонали пересекаются в одной точке. Докажите, что, слегка пошевелив одну из вершин особого семиугольника, можно получить неособый семиугольник.
Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 134]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .