Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Таня сделала кошелёк из двух клетчатых кусочков ткани $8\times10$, наложив их друг на друга и сшив друг с другом края обеих пар коротких сторон и нижних длинных сторон (см. рисунок, слева сплющенный кошелёк, справа приоткрытый).

Хулиган Вася сделал прямолинейный надрез на переднем слое ткани от одного узла сетки до другого. Но Таня не расстроилась, потому что смогла сложить из надрезанного кошелька кулёк (в сплющенном виде это двуслойный треугольник, не обязательно равнобедренный, нескреплённые стороны совпадают — пример кулька в сплющенном и в приоткытом виде см. на рисунке ниже).

Отметьте на рисунке-кошельке два узла сетки, между которыми мог провести надрез Вася.

Вниз   Решение


Что больше:  1234567/7654321  или  1234568/7654322?

Вверх   Решение

Задачи

Страница: << 70 71 72 73 74 75 76 >> [Всего задач: 401]      



Задача 102242

Темы:   [ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Признаки подобия ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Хорды и секущие (прочее) ]
Сложность: 4-
Классы: 8,9

На одной стороне угла A взяты точки B, C, D, а на другой – точки E, F, G, так, что  FDBC,  CGEF,  ECBD,  BFEG.  Отношение длины отрезка BE к расстоянию от точки A до центра описанной вокруг четырёхугольника BDGE окружности равно 20/17. Найдите величину угла A.

Прислать комментарий     Решение

Задача 115292

Темы:   [ Три точки, лежащие на одной прямой ]
[ Ортоцентр и ортотреугольник ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Диаметр, основные свойства ]
[ Вписанные и описанные окружности ]
[ Свойства симметрий и осей симметрии ]
Сложность: 4-
Классы: 8,9

Дан остроугольный треугольник ABC. Точки B' и C' симметричны соответственно вершинам B и C относительно прямых AC и AB. Пусть P – точка пересечения описанных окружностей треугольников ABB' и ACC', отличная от A. Докажите, что центр описанной окружности треугольника ABC лежит на прямой PA.

Прислать комментарий     Решение

Задача 115955

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Вписанные и описанные окружности ]
[ Ортоцентр и ортотреугольник ]
[ Диаметр, основные свойства ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Угол между касательной и хордой ]
Сложность: 4-
Классы: 7,8,9

Вокруг равнобедренного треугольника ABC с основанием AC описана окружность ω. Точка F – ортоцентр треугольника ABC; продолжение высоты CE пересекает ω в точке G. Докажите, что высота AD является касательной к описанной окружности треугольника GBF.

Прислать комментарий     Решение

Задача 52924

Темы:   [ Формула Эйлера ]
[ Вписанные и описанные окружности ]
[ Теорема синусов ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 4
Классы: 8,9

В треугольнике KLM точка B — центр вписанной окружности, а точка C — центр окружности, описанной около треугольника KLM. Прямая BC перпендикулярна биссектрисе MB треугольника KLM. Известно, что угол BMC равен $ \gamma$. Найдите углы треугольника KLM.

Прислать комментарий     Решение


Задача 65382

Темы:   [ Четырехугольная пирамида ]
[ Сфера, описанная около пирамиды ]
[ Прямые и плоскости в пространстве (прочее) ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Инверсия помогает решить задачу ]
Сложность: 4
Классы: 10,11

Четырёхугольная пирамида SABCD вписана в сферу. Из вершин A, B, C, D опущены перпендикуляры AA1, BB1, CC1, DD1 на прямые SC, SD, SA, SB соответственно. Оказалось, что точки S, A1, B1, C1, D1 различны и лежат на одной сфере. Докажите, что точки A1, B1, C1, D1 лежат в одной плоскости.

Прислать комментарий     Решение

Страница: << 70 71 72 73 74 75 76 >> [Всего задач: 401]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .