Страница: << 50 51 52 53 54 55 56 >> [Всего задач: 276]
|
|
Сложность: 4 Классы: 9,10,11
|
Пусть p – простое число и p > 5. Докажите,
что если разрешимо сравнение x4 + x3 + x2 + x + 1 ≡ 0 (mod p), то
p ≡ 1 (mod 5).
Выведите отсюда бесконечность множества простых чисел вида 5n + 1.
Пусть
=
, где
– несократимая дробь.
Докажите, что неравенство bn+1 < bn выполнено для бесконечного числа натуральных n.
|
|
Сложность: 4 Классы: 8,9,10,11
|
На столе лежат N > 2 кучек по одному ореху в каждой. Двое ходят по очереди. За ход нужно выбрать две кучки, где числа орехов взаимно просты,
и объединить эти кучки в одну. Выиграет тот, кто сделает последний ход. Для каждого N выясните, кто из играющих может всегда выигрывать, как бы ни играл его противник.
|
|
Сложность: 4+ Классы: 8,9,10
|
Дано равенство (am1 – 1)...(amn – 1) = (ak1 + 1)...(akl + 1), где a, n, l и все показатели степени – натуральные числа, причём a > 1.
Найдите все возможные значения числа a.
Докажите, что если число n не является степенью простого числа, то существует выпуклый n-угольник со сторонами длиной 1, 2,..., n, все углы которого равны.
Страница: << 50 51 52 53 54 55 56 >> [Всего задач: 276]