Страница:
<< 50 51 52 53
54 55 56 >> [Всего задач: 375]
В выпуклом четырёхугольнике ABCD известно, что ∠A + ∠D = 120° и AB = BC = CD.
Докажите, что точка пересечения диагоналей равноудалена от вершин A и D.
В выпуклом пятиугольнике ABCDE AB = BC, ∠ABE + ∠DBC = ∠EBD и
∠AEB + ∠BDC = 180°.
Докажите, что ортоцентр треугольника BDE лежит на диагонали AC.
|
|
Сложность: 4- Классы: 8,9,10
|
Две окружности пересекаются в точках A и B. Через точку A проведена прямая, вторично пересекающая первую окружность в точке C, а вторую – в точке D. Пусть M и N – середины дуг BC и BD, не содержащих точку A, а K – середина отрезка CD. Докажите, что угол MKN прямой. (Можно считать, что точки C и D лежат по разные стороны от точки A.)
Дан треугольник ABC, в котором AB > BC. Касательная к его описанной окружности в точке B пересекает прямую AC в точке P. Точка D симметрична точке B относительно точки P, а точка E симметрична точке C относительно прямой BP. Докажите, что четырёхугольник ABED – вписанный.
Четырёхугольник ABCD вписан в окружность, причём касательные в точках B и D пересекаются в точке K, лежащей на прямой AC.
а) Докажите, что AB·CD = BC·AD.
б) Прямая, параллельная KB, пересекает прямые BA, BD и BC в точках P, Q и R. Докажите, что PQ = QR.
Страница:
<< 50 51 52 53
54 55 56 >> [Всего задач: 375]