ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 499]      



Задача 108902

Темы:   [ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3
Классы: 8,9

Серединные перпендикуляры к диагоналям BD и AC вписанного четырёхугольника ABCD пересекают сторону AD в точках X и Y соответственно. Докажите, что середина стороны BC равноудалена от прямых BX и CY .
Прислать комментарий     Решение


Задача 115499

Темы:   [ Вспомогательная окружность ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанный угол, опирающийся на диаметр ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3
Классы: 8,9

На стороне AB прямоугольника ABCD выбрана точка M . Через эту точку проведён перпендикуляр к прямой CM , который пересекает сторону  AD в точке  E . Точка P  — основание перпендикуляра, опущенного из точки  M на прямую  CE . Найдите угол  APB .
Прислать комментарий     Решение


Задача 115661

Темы:   [ Вписанный угол равен половине центрального ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3
Классы: 8,9

Окружность описана около равностороннего треугольника ABC . На дуге BC , не содержащей точку A , расположена точка M , делящая градусную меру этой дуги в отношении 1:2. Найдите углы треугольника AMB .
Прислать комментарий     Решение


Задача 116491

Темы:   [ Геометрические неравенства (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Угол между касательной и хордой ]
[ Прямые, лучи, отрезки и углы (прочее) ]
[ Вписанные четырехугольники (прочее) ]
[ Симметрия помогает решить задачу ]
Сложность: 3
Классы: 7,8,9

В окружности с центром O проведена хорда AB и радиус OK, пересекающий её под прямым углом в точке M. На большей дуге AB окружности выбрана точка P, отличная от середины этой дуги. Прямая PM вторично пересекает окружность в точке Q, а прямая PK пересекает AB в точке R. Докажите, что  KR > MQ.

Прислать комментарий     Решение

Задача 116588

Темы:   [ Шестиугольники ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 3
Классы: 8,9,10

Дан выпуклый шестиугольник ABCDEF. Известно, что  ∠FAE = ∠BDC,  а четырёхугольники ABDF и ACDE являются вписанными.
Докажите, что прямые BF и CE параллельны.

Прислать комментарий     Решение

Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 499]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .