Страница:
<< 5 6 7 8 9 10 11 [Всего задач: 54]
|
|
Сложность: 4- Классы: 7,8,9,10
|
В классе 16 учеников. Каждый месяц учитель делит класс на две группы.
Какое наименьшее количество месяцев должно пройти, чтобы каждые два ученика в какой-то из месяцев оказались в разных группах?
|
|
Сложность: 5- Классы: 8,9,10,11
|
В королевстве 16 городов. Король хочет построить такую систему дорог, чтобы
из каждого города можно было попасть в каждый, минуя не более одного
промежуточного города, и чтобы из каждого города выходило не более пяти дорог.
а) Докажите, что это возможно.
б) Докажите, что если в формулировке заменить число 5 на число 4,
то желание короля станет неосуществимым.
|
|
Сложность: 5- Классы: 10,11
|
Саша написал по кругу в произвольном порядке не более ста различных натуральных чисел, а Дима пытается угадать их количество. Для этого Дима сообщает Саше в некотором порядке несколько номеров, а затем Саша сообщает Диме в том же порядке, какие числа стоят под указанными Димой номерами, если считать числа по часовой стрелке, начиная с одного и того же числа. Сможет ли Дима заведомо угадать количество написанных Сашей чисел, сообщив
а) 17 номеров;
б) менее 16 номеров?
|
|
Сложность: 3+ Классы: 10,11
|
Существует ли в пространстве куб, расстояния от вершин которого до данной
плоскости равны 0, 1, 2, 3, 4, 5, 6, 7?
Страница:
<< 5 6 7 8 9 10 11 [Всего задач: 54]