Страница:
<< 10 11 12 13
14 15 16 >> [Всего задач: 101]
На продолжении
AB, BC, CD и
DA сторон выпуклого
четырёхугольника
ABCD откладываются отрезки
BB1=AB; CC1=BC;
DD1=CD; AA1=AD . Доказать, что площадь четырёхугольника
A1B1C1D1 в пять раз больше площади четырёхугольника
ABCD .
Разделим каждую сторону выпуклого четырёхугольника ABCD на три равные части и соединим отрезками соответствующие точки на противоположных сторонах (см. рис.). Докажите, что площадь "среднего" четырёхугольника в 9 раз меньше площади
четырёхугольника ABCD.
|
|
Сложность: 4- Классы: 9,10
|
Дана окружность с центром O и радиусом 1. Из точки A к ней проведены касательные AB и AC. Точка M, лежащая на окружности, такова, что четырёхугольники OBMC и ABMC имеют равные площади. Найдите MA.
|
|
Сложность: 4- Классы: 8,9,10,11
|
Квадратная доска разделена семью прямыми, параллельными одной стороне доски,
и семью прямыми, параллельными другой стороне доски, на 64 прямоугольные клетки, которые покрашены в белый и чёрный цвета в шахматном порядке. Расстояния между соседними прямыми не обязательно одинаковы, поэтому клетки могут быть разных размеров. Известно, однако, что отношение площади каждой белой клетки к площади любой чёрной клетки не больше 2. Найдите наибольшее возможное отношение суммарной площади белых клеток к суммарной площади чёрных.
|
|
Сложность: 4- Классы: 10,11
|
В выпуклом пятиугольнике ABCDE: ∠A = ∠C =
90°, AB = AE, BC = CD, AC = 1. Найдите площадь пятиугольника.
Страница:
<< 10 11 12 13
14 15 16 >> [Всего задач: 101]