|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи На плоскости отмечены точки с целочисленными координатами. Доказать, что найдётся окружность, внутри которой лежат ровно 1982 отмеченные точки. Решите уравнение 2x + 3y + 3z = 11 в целых числах. Основания равнобедренной трапеции равны a и b (a > b), острый угол равен 45o. Найдите площадь трапеции.
Числа x, y, z и t лежат в интервале (0, 1). Докажите неравенство |
Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 1023]
Имеется три комплекта домино разного цвета. Как выложить в цепочку (по правилам домино) все эти три комплекта так, чтобы каждые две соседние доминошки имели разный цвет?
а) Дан кусок проволоки длиной 120 см. Можно ли, не ломая проволоки, изготовить каркас куба с ребром 10 см?
30 человек голосуют по пяти предложениям. Сколькими способами могут распределиться голоса, если каждый голосует только за одно предложение и учитывается лишь количество голосов, поданных за каждое предложение?
Докажите, что в дереве есть вершина, из которой выходит ровно одно ребро (такая вершина называется висячей).
Докажите, что при удалении любого ребра из дерева оно превращается в несвязный граф.
Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 1023] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|