Страница:
<< 5 6 7 8
9 10 11 >> [Всего задач: 56]
Докажите, что каждое число a в треугольнике Паскаля, уменьшенное на 1, равно сумме всех чисел, заполняющих параллелограмм, ограниченный теми правой и левой диагоналями, на пересечении которых стоит число a (сами эти диагонали в рассматриваемый параллелограмм не включаются).
|
|
Сложность: 4- Классы: 6,7,8
|
Может ли кузнечик за 25 прыжков вернуться в начальную позицию, если он прыгает:
a) по прямой в любую сторону на нечётное расстояние;
б) по плоскости на расстояние 1 в любом из четырёх основных направлений (вверх, вниз, вправо, влево);
в) по плоскости ходом коня (то есть по диагонали прямоугольника 1×2);
г) по диагонали прямоугольника a×b (a и b фиксированы).
|
|
Сложность: 4- Классы: 7,8,9
|
Улицы города расположены в трёх направлениях, так что все кварталы – равные между собой равносторонние треугольники. Правила уличного движения таковы, что через перекресток можно проехать либо прямо, либо повернув влево или вправо на 120° в ближайшую улицу. Поворачивать разрешается только на перекрёстках. Две машины выехали друг за другом из одной точки в одном направлении и едут с одинаковой скоростью, придерживаясь этих правил. Может ли случиться, что через некоторое время они на какой-то улице (не на перекрёстке) встретятся?
|
|
Сложность: 4 Классы: 9,10,11
|
Рассеянный Ученый в своей лаборатории вывел одноклеточный организм, который с вероятностью 0,6 делится на два таких же организма, а с вероятностью 0,4 погибает, не оставив потомства. Найдите вероятность того, что через некоторое время у Рассеянного Ученого не останется ни одного такого организма.
|
|
Сложность: 4 Классы: 7,8,9
|
В одном из узлов шестиугольника со стороной
n , разбитого на правильные
треугольники
(см. рис.) , стоит фишка. Двое играющих по очереди
передвигают ее в один из соседних узлов, причем запрещается ходить в узел,
в котором фишка уже побывала. Проигрывает тот, кто не может сделать хода.
Кто выигрывает при правильной игре?
Страница:
<< 5 6 7 8
9 10 11 >> [Всего задач: 56]