Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 56]
|
|
|
Сложность: 5- Классы: 9,10,11
|
Для каждой пары действительных чисел
a и
b рассмотрим последовательность
чисел
pn = [2{
an +
b}]. Любые
k подряд идущих членов этой
последовательности назовем словом. Верно ли, что любой упорядоченный набор из
нулей и единиц длины
k будет словом последовательности, заданной некоторыми
a и
b при
k = 4; при
k = 5?
Примечание: [c] - целая часть, {c} - дробная часть числа c.
|
|
|
Сложность: 5 Классы: 10,11
|
Положительные иррациональные числа a и b таковы, что 1/a+1/b=1.
Докажите, что среди чисел [ma], [nb] каждое натуральное число
встречается ровно один раз.
|
|
|
Сложность: 5 Классы: 8,9,10,11
|
Для произвольного числа $x$ рассмотрим сумму
$$Q(x)=\lfloor x\rfloor+\left\lfloor\frac{x}{2}\right\rfloor+\left\lfloor\frac{x}{3}\right\rfloor+\left\lfloor\frac{x}{4}\right\rfloor+\ldots+\left\lfloor\frac{x}{10000}\right\rfloor.$$
Найдите разность $Q(2023) – Q(2022)$. (Здесь $\lfloor x\rfloor$ обозначает целую часть числа $x$, то есть наибольшее целое число, не превосходящее $x$.)
|
|
|
Сложность: 5 Классы: 9,10,11
|
Дано натуральное число $n$. Для произвольного числа $x$ рассмотрим сумму
$$
Q(x)=\lfloor x\rfloor+\left\lfloor\frac{x}{2}\right\rfloor+\left\lfloor\frac{x}{3}\right\rfloor+\left\lfloor\frac{x}{4}\right\rfloor+\cdots+\left\lfloor\frac{x}{10^{n}}\right\rfloor .
$$
Найдите разность $Q\left(10^{n}\right)-Q\left(10^{n}-1\right)$. (Здесь $\lfloor x\rfloor$ обозначает целую часть числа $x$, то есть наибольшее целое число, не превосходящее $x$.)
|
|
|
Сложность: 2+ Классы: 7,8,9
|
Докажите, что для действительного положительного α и натурального d всегда выполнено равенство [α/d] = [[α]/d].
Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 56]