ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи
Докажите, что если два выпуклых четырёхугольника расположены так, что середины их сторон совпадают, то их площади равны.
Пусть a, b – натуральные числа и (a, b) = 1. Докажите, что величина Докажите, что для плоского графа справедливо неравенство 2E ≥ 3F.
В четырёхугольнике ABCD углы B и D — прямые. Диагональ AC образует со стороной AB острый угол в 40o, а со стороной AD -- угол в 30o. Найдите острый угол между диагоналями AC и BD.
Дописать к 523... три цифры так, чтобы полученное шестизначное число делилось на 7, 8 и 9. |
Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 200]
Докажите, что пересечение трёх прямых круговых цилиндров с радиусами 1, оси которых попарно взаимно перпендикулярны (но не обязательно пересекаются), содержится в некотором шаре радиуса
Пусть h1, h2, h3 – высоты треугольника, r – радиус вписанной окружности. Докажите, что h1 + h2 + h3 ≥ 9r.
Докажите неравенство xαyβ ≤ αx + βy для положительных значений переменных при условии, что α + β = 1 (α, β > 0).
Докажите неравенство (1 + x1)...(1 + xn) ≥ 2n, где x1...xn = 1.
Используя результат задачи 61403, докажите неравенства:
в)
Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 200]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке