Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Точки A, B и C лежат на одной прямой (точка B расположена между точками A и C). Через точки A и B проводятся окружности, а через точку C — касательные к ним. Найдите геометрическое место точек касания.

Вниз   Решение


В стране несколько городов (больше одного); некоторые пары городов соединены дорогами. Известно, что из каждого города можно попасть в любой другой, проезжая по нескольким дорогам. Кроме того, дороги не образуют циклов, то есть если выйти из некоторого города по какой-то дороге и далее двигаться так, чтобы не проходить по одной дороге дважды, то невозможно возвратиться в начальный город. Докажите, что в этой стране найдутся хотя бы два города, каждый из которых соединен дорогой ровно с одним городом.

ВверхВниз   Решение


В секретной службе работают n агентов – 001, 002, ..., 007, ..., n. Первый агент следит за тем, кто следит за вторым, второй – за тем, кто следит за третьим, и т.д., n-й – за тем, кто следит за первым. Докажите, что n – нечётное число.

ВверхВниз   Решение


Докажите, что квадрат биссектрисы треугольника равен произведению сторон, её заключающих, без произведения отрезков третьей стороны, на которые она разделена биссектрисой.

ВверхВниз   Решение


На сфере радиуса 11 расположены точки A , A1 , B , B1 , C и C1 . Прямые AA1 , BB1 и CC1 попарно перпендикулярны и пересекаются в точке M , отстоящей от центра сферы на расстояние . Найдите AA1 , если известно, что BB1=18 , а точка M делит отрезок CC1 в отношении (8 + ):(8 - ) .

Вверх   Решение

Задачи

Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 1008]      



Задача 34972

Темы:   [ Комбинаторика (прочее) ]
[ Индукция (прочее) ]
[ Деление с остатком ]
Сложность: 3+
Классы: 7,8,9

При каких  n > 3  набор гирь с массами 1, 2, 3, ..., n граммов можно разложить на три равные по массе кучки?

Прислать комментарий     Решение

Задача 35089

Тема:   [ Связность и разложение на связные компоненты ]
Сложность: 3+
Классы: 9,10,11

В стране n городов. Между каждыми двумя городами установлено воздушное сообщение одной из двух авиакомпаний. Докажите, из этих двух авиакомпаний хотя бы одна такова, что что из любого города можно попасть в любой другой рейсами только этой авиакомпании.

Прислать комментарий     Решение

Задача 35146

Темы:   [ Ориентированные графы ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 8,9,10

В секретной службе работают n агентов – 001, 002, ..., 007, ..., n. Первый агент следит за тем, кто следит за вторым, второй – за тем, кто следит за третьим, и т.д., n-й – за тем, кто следит за первым. Докажите, что n – нечётное число.

Прислать комментарий     Решение

Задача 35186

Темы:   [ Комбинаторика (прочее) ]
[ Геометрия на клетчатой бумаге ]
Сложность: 3+

Дана таблица размера m×n  (m, n > 1).  В ней отмечены центры всех клеток. Какое наибольшее число отмеченных центров можно выбрать так, чтобы никакие три из них не являлись вершинами прямоугольного треугольника?
Прислать комментарий     Решение


Задача 35199

Темы:   [ Деревья ]
[ Принцип крайнего (прочее) ]
Сложность: 3+
Классы: 7,8,9

В стране несколько городов (больше одного); некоторые пары городов соединены дорогами. Известно, что из каждого города можно попасть в любой другой, проезжая по нескольким дорогам. Кроме того, дороги не образуют циклов, то есть если выйти из некоторого города по какой-то дороге и далее двигаться так, чтобы не проходить по одной дороге дважды, то невозможно возвратиться в начальный город. Докажите, что в этой стране найдутся хотя бы два города, каждый из которых соединен дорогой ровно с одним городом.

Прислать комментарий     Решение

Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 1008]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .