|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи На сферическом Солнце обнаружено конечное число круглых пятен, каждое из которых занимает меньше половины поверхности Солнца. Эти пятна предполагаются замкнутыми (т.е. граница пятна принадлежит ему) и не пересекаются между собой. Доказать, что на Солнце найдутся две диаметрально противоположные точки, не покрытые пятнами. Можно ли внутри правильного пятиугольника разместить отрезок, который из всех вершин виден под одним и тем же углом? Докажите, что точка m = 1/3 (a1 + a2 + a3) является точкой пересечения медиан треугольника a1a2a3. Основания равнобедренной трапеции равны a и b ( a>b ), боковая сторона равна l . Найдите радиус окружности, описанной около этой трапеции. Среди поля проходит прямая дорога, по которой со скоростью 10 км/ч едет автобус. Укажите все точки на поле, из которых можно догнать автобус, если бежать с такой же скоростью. |
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 290]
Дана некоторая тройка чисел. С любыми двумя из них разрешается проделывать следующее: если эти числа равны a и b, то их можно заменить на
См. задачу 73546 а).
На доске записаны несколько чисел. За один ход разрешается любые два из них a и b, одновременно не равные нулю, заменить на числа a – b/2 и b + a/2. Можно ли через несколько таких ходов получить на доске исходные числа?
На доске выписаны числа 1, ½, ..., 1/n. Разрешается стереть любые два числа a и b и заменить их на число ab + a + b.
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 290] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|