Страница:
<< 33 34 35 36
37 38 39 >> [Всего задач: 1023]
|
|
|
Сложность: 3+ Классы: 7,8,9
|
В стране несколько городов (больше одного); некоторые пары городов соединены дорогами. Известно, что из каждого города можно попасть в любой другой, проезжая по нескольким дорогам. Кроме того, дороги не образуют циклов, то есть если выйти из некоторого города по какой-то дороге и далее двигаться так, чтобы не проходить по одной дороге дважды, то невозможно возвратиться в начальный город. Докажите, что в этой стране найдутся хотя бы два города, каждый из которых соединен дорогой ровно с одним городом.
|
|
|
Сложность: 3+ Классы: 8,9,10
|
В сериале "Тайна Санта-Барбары" участвует 20 героев. Каждую серию происходит одно из событий: некоторый герой узнаёт Тайну, некоторый герой узнаёт, что кто-то знает Тайну, некоторый герой узнаёт, что кто-то не знает Тайну. Какое наибольшее число серий может продолжаться сериал?
|
|
|
Сложность: 3+ Классы: 10,11
|
Найдите первые 99 знаков после запятой в разложении числа
.
В системе связи, состоящей из 2001 абонентов, каждый абонент связан ровно с n другими. Определите все возможные значения n.
В мешке изюма содержится 2001 изюминка общим весом 1001 г, причём ни одна изюминка не весит больше 1,002 г.
Докажите, что весь изюм можно разложить на две чаши весов так, чтобы они показали разность, не превосходящую 1 г.
Страница:
<< 33 34 35 36
37 38 39 >> [Всего задач: 1023]