ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Рассматриваются все призмы, в основании которых лежит выпуклый 2015-угольник. Найдите двугранные углы пирамиды ABCD , все ребра которой равны между собой. Докажите, что если записать в обратном порядке цифры любого натурального числа, то разность исходного и нового числа будет делиться на 9. По окружности записаны 30 чисел. Каждое из этих чисел равно модулю разности двух чисел, стоящих после него по часовой стрелке. Сумма всех чисел |
Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 79]
Докажите, что составное число n всегда имеет делитель, больший 1, но не больший
а) Назовите 10 первых натуральных чисел, имеющих нечётное число делителей (в число делителей включается единица и само число). б) Попробуйте сформулировать и доказать правило, позволяющее найти следующие такие числа.
Найдите сумму всех правильных несократимых дробей со знаменателем n.
Найдите все такие простые числа p, что число p² + 11 имеет ровно шесть различных делителей (включая единицу и само число).
Докажите, что каждое натуральное число является разностью двух натуральных
чисел, имеющих одинаковое количество простых делителей.
Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 79]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке