Страница: 1
2 >> [Всего задач: 6]
Постройте треугольник по стороне, противолежащему углу и медиане, проведенной к другой стороне
(исследование вопроса о количестве решений не требуется).
|
|
Сложность: 3+ Классы: 9,10
|
Точки A, B и C лежат на одной прямой, причём B находится между A и C.
Найдите геометрическое место таких точек M, что радиусы описанных окружностей треугольников AMB и CMB равны.
Постройте треугольник АВС по углу А и медианам, проведенным из вершин В и С.
|
|
Сложность: 4 Классы: 8,9,10,11
|
В угол вписаны три окружности $\Gamma_1$, $\Gamma_2$, $\Gamma_3$ (радиус $\Gamma_1$ наименьший, а радиус $\Gamma_3$ наибольший), притом $\Gamma_2$ касается $\Gamma_1$ и $\Gamma_3$ в точках $A$ и $B$ соответственно. Пусть $l$ – касательная в точке $A$ к $\Gamma_1$. Рассмотрим все окружности $\omega$, касающиеся $\Gamma_1$ и $l$. Найдите геометрическое место точек пересечения общих внутренних касательных к парам окружностей $\omega$ и $\Gamma_3$.
На окружности фиксированы точки A и B, а точка C движется по
этой окружности. Найдите геометрическое место точек пересечения
медиан треугольников ABC.
Страница: 1
2 >> [Всего задач: 6]