Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Сто человек ответили на вопрос: "Будет ли новый президент лучше прежнего?" Из них a человек считают, что будет лучше, b – что будет такой же, и c – что будет хуже. Социологи построили два показателя "оптимизма" опрошенных:  m = a + b/2  и  n = a – c.  Оказалось, что  m = 40.  Найдите n.

Вниз   Решение


Автор: Шатунов Л.

Через вершины $A$, $B$, $C$ треугольника $ABC$ провели прямые $a_1, b_1, c_1$ соответственно. Отразим $a_1$, $b_1$, $c_1$ относительно биссектрис соответствующих углов треугольника $ABC$, получив $a_2$, $b_2$, $c_2$. Пусть $A_1=b_1\cap c_1$, $B_1=a_1\cap c_1$, $C_1=a_1\cap b_1$, аналогично определим $A_2$, $B_2$, $C_2$. Докажите, что у треугольников $A_1B_1C_1$ и $A_2B_2C_2$ одинаковое отношение площади к радиусу описанной окружности (т.е. $\frac{S_1}{R_1}=\frac{S_2}{R_2}$, где $S_i=S(\triangle A_iB_iC_i)$, $R_i=R(\triangle A_iB_iC_i)$).

ВверхВниз   Решение


В десятичной записи положительного числа α отброшены все десятичные знаки, начиная с пятого знака после запятой (то есть взято приближение α с недостатком с точностью до 0,0001). Полученное число делится на α и частное снова округляется с недостатком с той же точностью. Какие числа при этом могут получиться?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]      



Задача 35577

Тема:   [ Геометрические неравенства (прочее) ]
Сложность: 2+
Классы: 8,9

Даны положительные числа a, b, c, d, причем a>b>c>d. Докажите, что (a+b+c+d)2>a2+3b2+5c2+7d2.
Прислать комментарий     Решение


Задача 34877

Темы:   [ Геометрические неравенства (прочее) ]
[ Разрезания на параллелограммы ]
Сложность: 3
Классы: 7,8,9

Квадрат со стороной 1 разрезали на прямоугольники, у каждого из которых отметили одну сторону. Докажите, что сумма длин всех отмеченных сторон не может быть меньше 1.
Прислать комментарий     Решение


Задача 34961

Темы:   [ Геометрические неравенства (прочее) ]
[ Скалярное произведение. Соотношения ]
Сложность: 3
Классы: 9,10,11

Дано 8 действительных чисел: a,b,c,d,,e,f,g,h. Докажите, что хотя бы одно из 6 чисел ac+bd, ae+bf, ag+bh, ce+df, cg+dh, eg+fh неотрицательно.
Прислать комментарий     Решение


Задача 57399

Тема:   [ Геометрические неравенства (прочее) ]
Сложность: 3
Классы: 8,9

Докажите, что замкнутую ломаную длины 1 можно поместить в круг радиуса 0, 25.
Прислать комментарий     Решение


Задача 97777

Темы:   [ Геометрические неравенства (прочее) ]
[ Комбинаторная геометрия (прочее) ]
Сложность: 3
Классы: 8,9,10

Автор: Фольклор

В четырёхугольнике длины всех сторон и диагоналей меньше 1 м. Доказать, что его можно поместить в круг радиуса 0,9 м.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .