ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 499]      



Задача 116131

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Биссектриса делит дугу пополам ]
Сложность: 3
Классы: 8,9

Автор: Фольклор

B некотором треугольнике биссектрисы двух внутренних углов продолжили до пересечения с описанной окружностью и получили две равные хорды. Bерно ли, что треугольник равнобедренный?

Прислать комментарий     Решение

Задача 116196

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Угол между касательной и хордой ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3
Классы: 8,9

Диагонали вписанного четырехугольника ABCD пересекаются в точке K.
Докажите, что касательная в точке K к описанной окружности треугольника ABK, параллельна CD.

Прислать комментарий     Решение

Задача 116798

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3
Классы: 8,9,10

Автор: Фольклор

Две окружности пересекаются в точках P и Q. Прямая, пересекающая отрезок PQ, последовательно пересекает эти окружности в точках A, B, C и D.
Докажите, что  ∠APB = ∠CQD.

Прислать комментарий     Решение

Задача 77902

Тема:   [ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3
Классы: 8,9

Даны 3 окружности O1, O2, O3, проходящие через одну точку O. Вторые точки пересечения O1 с O2, O2 с O3 и O3 с O1 обозначим соответственно через A1, A2 и A3. На O1 берем произвольную точку B1. Если B1 не совпадает с A1, то проводим через B1 и A1 прямую до второго пересечения с O2 в точке B2. Если B2 не совпадет с A2, то проводим через B2 и A2 прямую до второго пересечения с O3 в точке B3. Если B3 не совпадет с A3, то проводим через B3 и A3 прямую до второго пересечения с O1 в точке B4. Докажите, что B4 совпадает с B1.
Прислать комментарий     Решение


Задача 52611

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Против большей стороны лежит больший угол ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 3+
Классы: 8,9

Треугольники ABC и ADC имеют общую сторону AC; стороны AD и BC пересекаются в точке M. Углы B и D равны по 40°. Расстояние между вершинами D и B равно стороне AB,  ∠AMC = 70°.  Найдите углы треугольников ABC и ADC.

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 499]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .