|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи На описанной окружности треугольника $ABC$ отметили середины дуг $BAC$ и $CBA$ – точки $M$ и $N$ соответственно, и середины дуг $BC$ и $AC$ – точки $P$ и $Q$ соответственно. Окружность $\omega_1$ касается стороны $BC$ в точке $A_1$ и продолжений сторон $AC$ и $AB$. Окружность $\omega_2$ касается стороны $AC$ в точке $B_1$ и продолжений сторон $BA$ и $BC$. Оказалось, что $A_1$ лежит на отрезке $NP$. Докажите, что $B_1$ лежит на отрезке $MQ$. |
Страница: 1 2 3 4 5 6 >> [Всего задач: 28]
Радиусы двух концентрических окружностей относятся как 7:4, а ширина кольца равна 12. Найдите радиус меньшей окружности.
Даны две концентрические окружности и пересекающая их прямая. Докажите, что отрезки этой прямой, заключённые между между окружностями, равны.
а) Где такое могло произойти? б) Найдите все такие точки на Земле.
Наименьшее расстояние между точками двух концентрических окружностей равно 2, а наибольшее равно 16. Найдите радиусы окружностей.
Страница: 1 2 3 4 5 6 >> [Всего задач: 28] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|