ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На описанной окружности треугольника $ABC$ отметили середины дуг $BAC$ и $CBA$ – точки $M$ и $N$ соответственно, и середины дуг $BC$ и $AC$ – точки $P$ и $Q$ соответственно. Окружность $\omega_1$ касается стороны $BC$ в точке $A_1$ и продолжений сторон $AC$ и $AB$. Окружность $\omega_2$ касается стороны $AC$ в точке $B_1$ и продолжений сторон $BA$ и $BC$. Оказалось, что $A_1$ лежит на отрезке $NP$. Докажите, что $B_1$ лежит на отрезке $MQ$.

   Решение

Задачи

Страница: 1 2 3 4 5 6 >> [Всего задач: 28]      



Задача 52817

Тема:   [ Концентрические окружности ]
Сложность: 2+
Классы: 8,9

Радиусы двух концентрических окружностей относятся как 7:4, а ширина кольца равна 12. Найдите радиус меньшей окружности.

Прислать комментарий     Решение


Задача 52818

Темы:   [ Концентрические окружности ]
[ Диаметр, хорды и секущие ]
Сложность: 3-
Классы: 8,9

Даны две концентрические окружности и пересекающая их прямая. Докажите, что отрезки этой прямой, заключённые между между окружностями, равны.

Прислать комментарий     Решение


Задача 115633

Темы:   [ Концентрические окружности ]
[ Касающиеся окружности ]
Сложность: 3
Классы: 8,9

Найдите радиус окружности, касающейся двух концентрических окружностей радиусов 3 и 5.
Прислать комментарий     Решение


Задача 32831

Тема:   [ Концентрические окружности ]
Сложность: 3
Классы: 7,8,9

Федя К. вышел из некоторой точки, прошел 1км на север, затем - 1км на восток, затем - 1км на юг и вернулся в исходную точку.
  а) Где такое могло произойти?
  б) Найдите все такие точки на Земле.
Прислать комментарий     Решение


Задача 52799

Темы:   [ Концентрические окружности ]
[ Неравенство треугольника ]
Сложность: 3+
Классы: 8,9

Наименьшее расстояние между точками двух концентрических окружностей равно 2, а наибольшее равно 16. Найдите радиусы окружностей.

Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 >> [Всего задач: 28]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .