ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Окружности
>>
Вписанный угол
>>
Вписанный угол равен половине центрального
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 207]
Две окружности с центрами O1 и O2 пересекаются в точках A и B. Первая окружность проходит через центр второй и её хорда BD пересекает вторую окружность в точке C и делит дугу ACB в отношении AC : CB = n. В каком отношении точка D делит дугу ADB?
В треугольнике ABC угол C – тупой; биссектриса BE угла B делит сторону AC на отрезки AE = 3, EC = 2. Известно, что точка K, лежащая на продолжении стороны BC за вершину C, является центром окружности, проходящей через точки C, E и точку пересечения биссектрисы угла B с биссектрисой угла ACK.
Окружности S1 и S2 пересекаются в точках A и B, причём центр O окружности S1 лежит на окружности S2. Хорда AC окружности S1 пересекает окружность S2 в точке D. Докажите, что отрезки OD и BC перпендикулярны.
В окружность вписан равносторонний треугольник. Докажите, что хорда, соединяющая середины дуг, отсекаемых сторонами треугольника, делится этими сторонами на три равные части.
Докажите, что среди всех треугольников с данным основанием и высотой, опущенной на это основание, наибольшую величину противолежащего угла имеет равнобедренный треугольник.
Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 207] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|