ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Дан треугольник ABC. На продолжении стороны AC за точку C
взята точка N, причём CN = 2/3 AC. Точка K находится на стороне AB, причём AK : KB = 3 : 2. При каких a и b уравнение x3 + ax + b = 0 имеет три различных решения, составляющих арифметическую прогрессию? |
Страница: << 49 50 51 52 53 54 55 >> [Всего задач: 449]
Найдите радиус окружности, которая высекает на обеих
сторонах угла, равного
В окружности радиуса R = 4 проведены хорда AB и диаметр AK,
образующий с хордой угол
В треугольник ABC со стороной BC, равной 9, вписана
окружность, касающаяся стороны BC в точке D. Известно, что
AD = DC и косинус угла BCA равен
В треугольник ABC со стороной BC, равной 11, вписана
окружность, касающаяся стороны AB в точке D. Известно, что
AC = CD и косинус угла BAC равен
Диагонали выпуклого четырёхугольника равны c и d и пересекаются под углом 45o. Найдите отрезки, соединяющие середины противоположных сторон четырёхугольника.
Страница: << 49 50 51 52 53 54 55 >> [Всего задач: 449]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке